Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 265(Pt 1): 130813, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479667

ABSTRACT

In this study, an active and intelligent nanofilm for monitoring and maintaining the freshness of pork was developed using ethyl cellulose/gelatin matrix through electrospinning, with the addition of natural purple sweet potato anthocyanin. The nanofilm exhibited discernible color variations in response to pH changes, and it demonstrated a higher sensitivity towards volatile ammonia compared with casting film. Notably, the experimental findings regarding the wettability and pH response performance indicated that the water contact angle between 70° and 85° was more favorable for the smart response of pH sensitivity. Furthermore, the film exhibited desirable antioxidant activities, water vapor barrier properties and also good antimicrobial activities with the incorporation of ε-polylysine, suggesting the potential as a food packaging film. Furthermore, the application preservation outcomes revealed that the pork packed with the nanofilm can prolong shelf life to 6 days, more importantly, a distinct color change aligned closely with the points indicating the deterioration of the pork was observed, changing from light pink (indicating freshness) to light brown (indicating secondary freshness) and then to brownish green (indicating spoilage). Hence, the application of this multifunctional film in intelligent packaging holds great potential for both real-time indication and efficient preservation of the freshness of animal-derived food items.


Subject(s)
Cellulose/analogs & derivatives , Pork Meat , Red Meat , Swine , Animals , Gelatin , Animal Feed , Anthocyanins , Food Packaging , Hydrogen-Ion Concentration
2.
Int J Biol Macromol ; 265(Pt 1): 130789, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479668

ABSTRACT

In this study, the feasibility of shellac nanofibers as carrier system for colonic delivery of quercetin was evaluated. Firstly, the nanofibers without and with different amounts (2.5 %, 5.0 %, and 7.5 %) of quercetin were fabricated using pure shellac as a carrier by electrospinning. The morphology of nanofibers was bead-shape confirmed by SEM. FTIR, XRD, and DSC analysis showed that quercetin was encapsulated into shellac nanofibers, forming an amorphous complex. The molecular docking simulation indicated quercetin bound well to shellac through hydrogen bonding and van der Waals forces. These nanofibers had higher thermal stability than pure quercetin, and their surface wettability exhibited a pH-responsive behavior. The loading capacity of quercetin varied from 2.25 % to 6.84 % with the increased amount of quercetin, and it affected the stability of nanofibers in food simulants by measuring the release profiles of quercetin. The shellac nanofibers had high gastrointestinal stability, with a minimum quercetin release of 16.87 % in simulated digestive fluids, while the remaining quercetin was delivered to the colon and was released gradually. Moreover, the nanofibers exerted enhanced anticancer activity against HCT-116 cells by arresting cell cycle in G0/G1 phase and inducing cell apoptosis. Overall, shellac nanofibers are promising materials for colon-targeted delivery of active compounds.


Subject(s)
Nanofibers , Quercetin , Resins, Plant , Quercetin/pharmacology , Quercetin/metabolism , Molecular Docking Simulation , Colon
3.
Compr Rev Food Sci Food Saf ; 23(2): e13305, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38379388

ABSTRACT

Recently, consumers have become increasingly interested in natural, health-promoting, and chronic disease-preventing medicine and food homology (MFH). There has been accumulating evidence that many herbal medicines, including MFH, are biologically active due to their biotransformation through the intestinal microbiota. The emphasis of scientific investigation has moved from the functionally active role of MFH to the more subtle role of biotransformation of the active ingredients in probiotic-fermented MFH and their health benefits. This review provides an overview of the current status of research on probiotic-fermented MFH. Probiotics degrade toxins and anti-nutritional factors in MFH, improve the flavor of MFH, and increase its bioactive components through their transformative effects. Moreover, MFH can provide a material base for the growth of probiotics and promote the production of their metabolites. In addition, the health benefits of probiotic-fermented MFH in recent years, including antimicrobial, antioxidant, anti-inflammatory, anti-neurodegenerative, skin-protective, and gut microbiome-modulating effects, are summarized, and the health risks associated with them are also described. Finally, the future development of probiotic-fermented MFH is prospected in combination with modern development technologies, such as high-throughput screening technology, synthetic biology technology, and database construction technology. Overall, probiotic-fermented MFH has the potential to be used in functional food for preventing and improving people's health. In the future, personalized functional foods can be expected based on synthetic biology technology and a database on the functional role of probiotic-fermented MFH.


Subject(s)
Anti-Infective Agents , Fermented Foods , Probiotics , Humans , Functional Food , Antioxidants
4.
Food Res Int ; 173(Pt 1): 113303, 2023 11.
Article in English | MEDLINE | ID: mdl-37803615

ABSTRACT

In this study, carotenoids and polyphenols were demonstrated to be the major active substances in the crude pigment extracts (CPE) of mango peels, accounting for 0.26 mg/g and 0.15 mg/g, respectively. The interactions between carotenoids and polyphenols in CPE was observed, as evidenced by that polyphenols significantly improved the antioxidant activity and storage stability of carotenoids in the CPE. Meanwhile, scanning electron microscopy showed that polyphenols are tightly bound to carotenoids. To further elucidate the interaction mechanism, the monomers of carotenoids and polyphenols were identified by HPLC and LC-MS analysis. Lutein (203.85 µg/g), ß-carotene (41.40 µg/g), zeaxanthin (4.20 µg/g) and α-carotene (1.50 µg/g) were authenticated as the primary monomers of carotenoids. Polyphenols were mainly consisted of gallic acid (95.10 µg/g), quercetin-3-ß-glucoside (29.10 µg/g), catechin (11.85 µg/g) and quercetin (11.55 µg/g). The interaction indexes between carotenoid and polyphenol monomer of CPE were calculated. The result indicated that lutein and gallic acid showed the greatest synergistic effect on the scavenging of DPPH and ABTS radical, suggesting the interaction between carotenoids and polyphenols in CPE was mainly caused by lutein and gallic acid. Molecular dynamics simulations and thermodynamic parameters analysis demonstrated that hydrogen bonding, electrostatic interactions, and van der Waals forces played dominant roles in the interaction between lutein and gallic acid, which was confirmed by Raman and X-ray diffraction. These results provided a new perspective on the interaction mechanism between carotenoids and polyphenols, which offered a novel strategy for the enhancement of the activities and stability of bioactive substances.


Subject(s)
Mangifera , Polyphenols , Lutein , Mangifera/chemistry , Quercetin , Carotenoids/analysis , Gallic Acid
5.
Int J Biol Macromol ; 253(Pt 6): 127175, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37783248

ABSTRACT

A colon-targeted delivery system that can efficiently deliver and release quercetin is essential to improve its bioavailability. We previously found that hydrophobic ethyl cellulose (EC) nanofibers could efficiently deliver quercetin to colon, but the release of quercetin was limited. To address this problem, hydrophilic gelatin (GN) was used as a regulator, and quercetin-loaded nanofibers with different mass ratios of EC to GN (3:1, 1:1, 1:2, 1:3) were fabricated by electrospinning. All nanofibers had a cylindrical morphology and high encapsulation efficiency (over 94 %), and there existed molecular interactions among quercetin, EC, and GN. The high GN content reduced the thermal stability of nanofibers but increased their surface wettability. Besides, these nanofibers had good stability in acidic and aqueous foods. Importantly, the release of quercetin in the simulated gastrointestinal fluid was <3 %. The addition of GN was beneficial to the release of quercetin in colon, and nanofibers with EC to GN being 1:3 had a more preferable release performance. The anticancer activity of nanofibers against HCT-116 cells was proved by inhibiting cell viability through the induction of apoptosis. Therefore, these nanofibers are potential carriers for efficient colon-targeted delivery of bioactive compounds in the food industry.


Subject(s)
Nanofibers , Quercetin , Quercetin/pharmacology , Gelatin/chemistry , Nanofibers/chemistry , Colon
6.
Int J Biol Macromol ; 253(Pt 3): 126944, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37722646

ABSTRACT

Exopolysaccharide (EPS), as a secondary metabolite of microorganisms, has been commonly used in the dairy industry to replace the traditional stabilizers. However, the EPS production by microorganism is generally low, which limits its application. A litchi polysaccharide (Lzp2-2) with the promoting effect on EPS production by Weissella confusa was purified. The SEM and FT-IR analysis indicated that Lzp2-2 displayed a compact netlike structure and typical bands of carbohydrates. The structure of Lzp2-2 was further elucidated, which was comprised of a major backbone structure [→3)-ß-D-Galp-(1→6)-ß-D-Galp-(1 â†’ 6)-ß-D-Galp-(1 â†’ 3)-ß-D-Glcp-(1 â†’ 6)-α-D-Glcp-(1 â†’ 3)-α-D-Glcp-(1→] linked with two side chains [α-L-Araf-(1 â†’ 5)-α-L-Araf-(1→, and ß-D-Glcp-(1 â†’ or α-L-Araf-(1→] at the O-3 and O-6) of ß-D-Galp-(1→, respectively. Finally, Lzp2-2 was applied as an additive to the medium of yoghurt fermented by W. confusa. The results indicated Lzp2-2 not only promoted the EPS production to improve the viscosity, texture and mouthfeel of yoghurt, but also facilitated the generation of other secondary metabolites (volatile organic compounds), thus elevating the flavor of yoghurt.


Subject(s)
Litchi , Weissella , Spectroscopy, Fourier Transform Infrared , Polysaccharides/chemistry , Weissella/chemistry
7.
Int J Biol Macromol ; 248: 125797, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37442510

ABSTRACT

In order to efficiently improve the colon-targeted delivery of quercetin, the hydrophobic core-shell nanofibers were fabricated to encapsulate quercetin using ethyl cellulose as the shell and zein as the core by coaxial electrospinning. The encapsulation efficiency of coaxial nanofibers reached >97 %. FTIR and XRD results revealed the interactions between quercetin and wall materials and quercetin was encapsulated in an amorphous state. The thermal stability and surface hydrophobicity of coaxial nanofibers were improved compared to the uniaxial zein fibers. After in vitro gastrointestinal digestion, the quercetin release from core-shell nanofibers was <12.38 %, while the corresponding value for zein fibers was 36.24 %. DPPH and FRAP assays showed that there was no significant difference in the antioxidant activity of quercetin before and after encapsulation. Furthermore, the encapsulated quercetin exhibited similar anti-proliferative activity against HCT-116 cells compared to the free form. The results suggest these coaxial nanofibers have potential applications in functional foods.


Subject(s)
Nanofibers , Zein , Quercetin/pharmacology , Quercetin/chemistry , Zein/chemistry , Nanofibers/chemistry , Cellulose/chemistry
8.
J Sci Food Agric ; 103(6): 2762-2772, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36220972

ABSTRACT

BACKGROUND: Great efforts have been made to improve the oral bioaccessibility of lipophilic ingredients with multi-functionalities. Achieving intestinal delivery of lipophilic ingredients and their encapsulation in micelles composed of bile salts and lipid hydrolysates (i.e. fatty acids) is critical for improving oral bioaccessibility. Therefore, oil-core microcapsules are considered ideal carriers of lipophilic ingredients. Previous studies have reported oil-core/zein-shell microcapsules constructed by a one-step anti-solvent process. Still, its efficacy as an intestinal delivery system was limited because if the porous shell structure. RESULTS: Zein solution was pretreated with ultrasound and tannic acid (TA) cross-linking. Composite oil-core microcapsule (COM) with a compact shell structure was successfully prepared by using modified zein solution in the anti-solvent process. Fourier-transform infrared spectroscopy and circular dichroism analyses indicated that ultrasound and TA synergistically promote the conformational transition of zein from α-helix to ß-sheet and enhance the hydrophobic interactions among protein chains. The above changes contribute to the strengthen of shell zein network. Correspondingly, COM presents superior encapsulation efficiency and environmental stability over the simple oil-core microcapsule (SOM) prepared without the use of ultrasound and TA. Furthermore, antioxidant activity of ß-carotene was well retained during the encapsulation process. In vitro studies indicated that COM was more resistant to digestibility and acid-induced swelling. More than 87% of ß-carotene could be released in the intestine in a sustainable way. The controllable release behavior thus promoted a significant increase in bioaccessibility of ß-carotene encapsulated in COM compared to SOM (85.9% versus 48.5%). CONCLUSION: The COM generated here shows potential for bioaccessibility improvement of lipophilic ingredients. © 2022 Society of Chemical Industry.


Subject(s)
Zein , Capsules , Zein/chemistry , beta Carotene/chemistry , Micelles , Intestines , Solvents
9.
Crit Rev Food Sci Nutr ; 63(26): 8048-8065, 2023.
Article in English | MEDLINE | ID: mdl-35319324

ABSTRACT

Members of Bifidobacterium are among the first microbes to colonize the human intestine naturally, their abundance and diversity in the colon are closely related to host health. Recently, the gut microbiota has been gradually proven to be crucial mediators of various metabolic processes between the external environment and the host. Therefore, the health-promoting benefits of Bifidobacterium spp. and their applications in food have gradually been widely concerned. The main purpose of this review is to comprehensively introduce general features, colonization methods, and safety of Bifidobacterium spp. in the human gut, highlighting its health benefits and industrial applications. On this basis, the existing limitations and scope for future research are also discussed. Bifidobacteria have beneficial effects on the host's digestive system, immune system, and nervous system. However, the first prerequisite for functioning is to have enough live bacteria before consumption and successfully colonize the colon after ingestion. At present, strain breeding, optimization (e.g., selecting acid and bile resistant strains, adaptive evolution, high cell density culture), and external protection technology (e.g., microencapsulation and protectants) are the main strategies to address these challenges in food application.


Subject(s)
Gastrointestinal Microbiome , Probiotics , Humans , Bifidobacterium/metabolism , Functional Food
10.
Int J Biol Macromol ; 222(Pt A): 599-609, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36170929

ABSTRACT

In the current study, the effects of fermentation manners on the structure and immunomodulatory activity of polysaccharide in longan wine or vinegar were investigated. Compared to longan polysaccharide (CP1), polysaccharide in longan wine (CP2) or vinegar (CP3 and CP4) had smaller molecular weights, and was consisted of more mannose, arabinose, rhamnose, galactose and less glucose. After purification, the major fraction (P1-P4) was obtained from CP1-CP4, respectively. The structures and immunoregulatory activities of P1-P4 were characterized. Fermentation and purification were favorable to increase the immunoregulatory activities of P2-P4, which were contributed to their different structural features. The structure-activity relationship analysis indicated that molecular weight, mannose, rhamnose, glucuronic acid, glucose and arabinose were significantly associated with the cytokines secretion. Compared with other polysaccharides, P3 displayed better immunomodulatory activity due to its lower molecular weight, lower contents of rhamnose and glucose, and higher levels of mannose and arabinose by activating MAPK and PI3K/Akt signaling pathways.


Subject(s)
Arabinose , Mannose , Fermentation , Rhamnose , Acetic Acid , Phosphatidylinositol 3-Kinases , Polysaccharides/pharmacology , Polysaccharides/chemistry , Glucose
11.
J Agric Food Chem ; 70(27): 8207-8221, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35775601

ABSTRACT

Poly(lactic acid), also abbreviated as PLA, is a promising biopolymer for food packaging owing to its environmental-friendly characteristic and desirable physical properties. Electrospinning technology makes the production of PLA-based nanomaterials available with expected structures and enhanced barrier, mechanical, and thermal properties; especially, the facile process produces a high encapsulation efficiency and controlled release of bioactive agents for the purpose of extending the shelf life and promoting the quality of foodstuffs. In this study, different types of electrospinning techniques used for the preparation of PLA-based nanofibers are summarized, and the enhanced properties of which are also described. Moreover, its application in active and intelligent packaging materials by introducing different components into nanofibers is highlighted. In all, the review establishes the promising prospects of PLA-based nanocomposites for food packaging application.


Subject(s)
Nanocomposites , Nanofibers , Biopolymers , Food Packaging/methods , Nanofibers/chemistry , Polyesters/chemistry
12.
Int J Biol Macromol ; 218: 739-750, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35870630

ABSTRACT

For the greater utilization of ß-carotene in antioxidant material, ß-carotene-loaded emulsion stabilized by alkali lignin (AL) was successfully electrospinning with poly (vinyl alcohol) (PVA) (PVA/AL/ß-carotene nanofiber). Transmission electron microscopy demonstrated the core-shell structure of nanofiber with the average diameter being 356.31 nm, and 85.7 % of ß-carotene was effectively encapsulated into the core section. Fourier transform infrared spectra and differential scanning calorimetry revealed the good compatibility and decreased crystallinity of ß-carotene, favoring its stability and solubility, respectively. As expected, the PVA/AL/ß-carotene nanofiber exhibited higher antioxidant activity than free ß-carotene due to the protection of AL matrix and the special structure of nanofiber, as the DPPH free radical scavenging rate being 90.7 % at 7th day. The sustained release behavior of ß-carotene and AL from fiber followed Fickian diffusion model, contributing to the greater protection for fish oil than that of emulsion. Thus, this study provides an approach to develop hydrophobic compounds-loaded emulsion electrospun antioxidant material with controlled release property and enhanced activity.


Subject(s)
Nanofibers , Alkalies , Antioxidants/pharmacology , Emulsions , Lignin , Nanofibers/chemistry , Polyvinyl Alcohol/chemistry , beta Carotene/chemistry
13.
Foods ; 11(9)2022 Apr 21.
Article in English | MEDLINE | ID: mdl-35563925

ABSTRACT

For improving probiotics' survivability under harsh conditions, this study used Lactiplantibacillus plantarum GIM1.648 as a model microorganism to investigate its ability to produce biofilms on electrospun ethyl cellulose nanofiber mats. SEM observations confirmed that biofilm was successfully formed on the nanofibers, with the latter being an excellent scaffold material. The optimal cultivation conditions for biofilm formation were MRS medium without Tween 80, a culture time of 36 h, a temperature of 30 °C, a pH of 6.5, and an inoculum concentration of 1% (v/v). The sessile cells in the biofilm exhibited improved gastrointestinal and thermal tolerance compared to the planktonic cells. Additionally, the RT-qPCR assay indicated that the luxS gene played a crucial role in biofilm formation, with its relative expression level being 8.7-fold higher compared to the planktonic cells. In conclusion, biofilm formation on electrospun nanofiber mat has great potential for improving the viability of probiotic cells under harsh conditions.

14.
Food Funct ; 13(9): 5287-5298, 2022 May 10.
Article in English | MEDLINE | ID: mdl-35441628

ABSTRACT

The present study shows the purification of a main oligosaccharide fraction (MLO 1-2) from the enzymatic hydrolysate of mulberry leaf polysaccharides by DEAE-52 cellulose and gel column chromatography. The physicochemical properties of MLO 1-2 were characterized. The structure of MLO 1-2 was obtained as follows: α-(2-OAc)-Manp-1 → 2-ß-Glcp-1 → 4-ß-Glcp-1 → 4-α-Glcp-1 → 2-α-Glcp-1 → 2-α-Galp-1 → 2-ß-Galp-1 → 2-ß-Galp-1, which was elucidated by methylation and NMR analysis. The molecular weight of MLO 1-2 showed no significant change after simulated saliva, gastric and intestinal digestion. This indicated that MLO 1-2 could pass through the digestive system without being degraded to safely reach the colon to regulate the gut microbiota. Additionally, MLO 1-2, more than glucose or galactooligosaccharides, promoted the proliferation of Bifidobacterium bifidum, B. adolescentis, Lacticaseibacillus rhamnosus and Lactobacillus acidophilus. Furthermore, the acetic and lactic acid concentrations of bacterial cultures inoculated with MLO 1-2 were higher than those inoculated with glucose and galactooligosaccharide (GOS). These results suggest that MLO 1-2 could be an excellent prebiotic for intestinal flora regulation and the promotion of gut health.


Subject(s)
Morus , Prebiotics , Glucose , Oligosaccharides/metabolism , Plant Leaves/metabolism
15.
Crit Rev Food Sci Nutr ; 62(23): 6341-6358, 2022.
Article in English | MEDLINE | ID: mdl-33749401

ABSTRACT

Lactoferrin (Lf), a bioactive protein initially found in many biological secretions including milk, is regarded as the nutritional supplement or therapeutic ligand due to its multiple functions. Research on its mode of action reveals that intact Lf or its active peptide (i.e., lactoferricin) shows an important multifunctional performance. Oral delivery is considered as the most convenient administration route for this bioactive protein. Unfortunately, Lf is sensitive to the gastrointestinal (GI) physicochemical stresses and lactoferricin is undetectable in GI digesta. This review introduces the functionality of Lf at the molecular level and its degradation behavior in GI tract is discussed in detail. Subsequently, the absorption and transport of Lf from intestine into the blood circulation, which is pivotal to its health promoting effects in various tissues, and some assisting labeling methods are discussed. Stabilization technologies aiming at preserving the structural integrity and functional properties of orally administrated Lf are summarized and compared. Altogether, this work comprehensively reviews the structure-function relationship of Lf, its oral fate and the development of stabilization technologies for the enhancement of the oral bioavailability of Lf. The existing limitations and scope for future research are also discussed.


Subject(s)
Lactoferrin , Milk , Animals , Chemical Phenomena , Gastrointestinal Tract/metabolism , Milk/chemistry
16.
Foods ; 10(8)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34441506

ABSTRACT

An ethyl acetate extract from of Nervilia fordii (NFE) with considerable suppression activity on lipid peroxidation (LPO) was first obtained with total phenolic and flavonoid contents and anti-LPO activity (IC50) of 86.67 ± 2.5 mg GAE/g sample, 334.56 ± 4.7 mg RE/g extract and 0.307 mg/mL, respectively. In order to improve its stability and expand its application in antioxidant packaging, the nano-encapsulation of NFE within poly(vinyl alcohol) (PVA) and polyvinyl(pyrrolidone) (PVP) bio-composite film was then successfully developed using electrospinning. SEM analysis revealed that the NFE-loaded fibers exhibited similar morphology to the neat PVA/PVP fibers with a bead-free and smooth morphology. The encapsulation efficiency of NFE was higher than 90% and the encapsulated NFE still retained its antioxidant capacity. Fourier transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD) analysis confirmed the successful encapsulation of NFE into fibers and their compatibility, and the thermal stability of which was also improved due to the intermolecular interaction demonstrated by thermo gravimetric analysis (TGA). The ability to preserve the fish oil's oxidation and extend its shelf-life was also demonstrated, suggesting the obtained PVA/PVP/NFE fiber mat has the potential as a promising antioxidant food packaging material.

17.
Food Sci Nutr ; 9(7): 3641-3654, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34262724

ABSTRACT

Mulberry has significant hypoglycemic effect and can be used as an auxiliary food for people with type 2 diabetes. However, it is rich in carbohydrate and cannot be consumed directly by diabetic patients. In the study, we fermented the mulberry to reduce the content of glucose and fructose, and added the soybean to reduce the loss of probiotics during fermentation and then determined its hypoglycemic effect. We induced type 2 diabetes mellitus (T2DM) mice by streptozotocin and measured its blood glucose, serum biochemistry, hepatic and pancreatic histopathology, and the diversity of the gut microbiota. After 5 weeks of oral DFMS administration, the glucose tolerance was improved significantly in T2DM mice. Furthermore, there were also significant increases in superoxide dismutase activity and glutathione concentration, and marked reductions in the concentrations of malondialdehyde and free fatty acids. Moreover, DFMS also prevented histopathological changes and the increases in the activities of alanine transaminase and aspartate transaminase. DFMS treatment also markedly increased the richness of the gut microbial community. The abundance of Bacteroidetes was increased, and those of Proteobacteria, Escherichia-Shigella, and Lactobacillus were reduced. In summary, DFMS has a clear hypoglycemic effect in mice with T2DM.

18.
Food Chem ; 355: 129608, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-33799260

ABSTRACT

Effects of enzymatic hydrolysis on the structural, rheological, and functional properties of mulberry leaf polysaccharide (MLP) were characterized in this study. The enzymatic hydrolysis of MLP raised the carbonyl, carboxyl, and hydroxyl groups from 7.21 ± 0.86 to 10.08 ± 0.28 CO/100 Glu, 9.40 ± 0.13 to 17.55 ± 0.34 COOH/100 Glu, and 5.71 ± 0.33 to 8.14 ± 0.24 OH/100 Glu, respectively. Meanwhile, an increase in thixotropic performance and structure-recovery capacities were observed in hydrolyzed MLP, while the molecular weight, surface tension, apparent viscosity, and thermal stability were decreased. An improved antioxidant activity of MLP was also achieved after the enzymatic degradation. Moreover, the hydrolyzed MLP showed greater ability to promote the growths of Bifidobacterium bifidum, Bifidobacterium adolescentis, Lactobacillus rhamnosus, and Lactobacillus acidophilus and the production of acetic acid, butyric acid, and lactic acid. The results demonstrate that enzymatic modification is a useful approach for polysaccharide processing.


Subject(s)
Glycoside Hydrolases/metabolism , Morus/chemistry , Morus/metabolism , Polysaccharides/chemistry , Antioxidants/chemistry , Bifidobacterium/drug effects , Bifidobacterium/growth & development , Hydrolysis , Lactobacillus/drug effects , Lactobacillus/growth & development , Plant Leaves/chemistry , Plant Leaves/metabolism , Polysaccharides/metabolism , Polysaccharides/pharmacology , Prebiotics , Rheology , Viscosity
19.
Nanotechnology ; 32(24)2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33690179

ABSTRACT

An oral multi-unit delivery system was developed by incorporating the nanoparticle (NP) into the nanofiber mat and its efficiency for intestinal-specific delivery and controlled release of a peptide (insulin) was investigated. Initially, the influence of deacetylation degree (DD) of chitosan and ionic gelation methods on the properties of NPs was studied. High DD (95%) chitosan was attributed to higher encapsulation efficiency and stability when crosslinked with polyanion tripolyphosphate. Subsequently, the multi-unit system was fabricated using a pH-sensitive polymer (sodium alginate) as the coating layer to further encapsulate the NP. Fiber mat with an average diameter of 481 ± 47 nm could significantly decrease the burst release of insulin in acidic condition and release most amount of insulin (>60%) in the simulated intestinal medium. Furthermore, the encapsulated peptide remained in good integrity. This multi-unit carrier provides the better-designed vehicle for intestinal-specific delivery and controlled release of the peptide.


Subject(s)
Chitosan/chemistry , Insulin/administration & dosage , Administration, Oral , Caco-2 Cells , Delayed-Action Preparations , Drug Compounding , Drug Delivery Systems , Humans , Hydrogen-Ion Concentration , Insulin/chemistry , Nanoparticles , Polyphosphates/chemistry
20.
J Sci Food Agric ; 100(12): 4400-4408, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32388876

ABSTRACT

BACKGROUND: Increasing food safety awareness of consumers promotes the development of rapid and sensitive detection techniques for pesticide residues. In this study, a new type of rapid detection card for organophosphorus and carbamate pesticide residues was developed by electrospinning. The card involved enzyme fiber mat (EFM) and substrate fiber mat (SFM) which were prepared by mixing poly(vinyl alcohol) with acetylcholinesterase (AChE) and indolyl acetate (IA), respectively. RESULTS: The mean diameter of fibers was 240 ± 53 nm for EFM and 387 ± 84 nm for SFM. Results of Fourier transform infrared and X-ray photoelectron spectroscopies confirmed that AChE and IA were successfully encapsulated into the fibers. The minimum concentrations of AChE and IA for effective detection were 1 and 3 mg mL-1 , respectively, and the optimal detection time was 15 min. The limits of detection for this card were 0.5 mg L-1 for omethoate, 1.5 mg L-1 for malathion, 0.1 mg L-1 for carbaryl and 0.02 mg L-1 for carbofuran. The detection card exhibited good storage stability and its activity could be maintained when stored at room temperature for at least 4 months. Additionally, the EFM can be reused three times. CONCLUSIONS: The detection card obtained here was superior to a commercial card in detecting pesticide residues in real food samples. Hence, this electrospun detection card has potential for simple, rapid and sensitive analysis of pesticide residues. © 2020 Society of Chemical Industry.


Subject(s)
Biosensing Techniques/methods , Insecticides/analysis , Pesticide Residues/analysis , Acetylcholinesterase/chemistry , Biosensing Techniques/instrumentation , Carbamates/analysis , Food Contamination/analysis , Organophosphorus Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...